Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.803
Filtrar
1.
Clin Pharmacol Drug Dev ; 12(11): 1069-1075, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37246720

RESUMEN

Celecoxib is a sulfanilamide nonsteroidal anti-inflammatory drug that can selectively inhibit cyclooxygenase-2 to inhibit prostaglandin production, achieving anti-inflammatory and analgesic effects. This study investigated the pharmacokinetics, safety, and bioequivalence of a single oral dose of celecoxib capsule (the test or reference preparation) in healthy volunteers under fasting and fed conditions. A single-center, randomized, open, single-dose, double-cycle crossover self-control design was conducted: 40 healthy volunteers were enrolled in the fasting and fed groups, respectively. A completely randomized method was used, with one group taking the test celecoxib preparation (T) and the other taking the reference celecoxib preparation (R). During the administration period, the safety of the drug was evaluated simultaneously, and venous blood was collected at the corresponding time points. The concentration of celecoxib in plasma was measured by liquid chromatography-tandem mass spectrometry. The main pharmacokinetic parameters were logarithmically converted and analyzed for variance. The 90% confidence interval for the bioavailability of the T compared to the R was calculated using maximum drug plasma concentration, area under the plasma concentration-time curve from time zero to the last quantifiable concentration point, and area under the plasma concentration-time curve from time zero to infinity for a single oral dose in volunteers, and the data obtained were all between 80% and 125%, indicating that the T and R have bioequivalence and good safety during fasting and fed administration.


Asunto(s)
Antiinflamatorios , Celecoxib , Pueblos del Este de Asia , Humanos , Antiinflamatorios/farmacocinética , Celecoxib/farmacocinética , Voluntarios Sanos , Equivalencia Terapéutica
2.
J Vet Pharmacol Ther ; 45(3): 273-282, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35394081

RESUMEN

Glaucine, an aporphine alkaloid with anti-tussive, anti-inflammatory, and anti-nociceptive properties, has been identified in post-race samples from racehorses. To investigate pharmacokinetics of glaucine in horses, a three-way crossover study of intravenous and oral glaucine (0.1 mg/kg) and orally administered tulip poplar shavings (50 g shavings = 0.001 mg/kg glaucine) was performed in six horses. A two-compartment model best described IV administration with alpha ( t 1 / 2 α ) and beta ( t 1 / 2 ß ) half-life lives of 0.3 (0.1-0.7) and 3.1 (2.4-7.8) h, respectively. The area under the curve ( AUC 0 ∞ iv ) was 45.4 (34.7-52.3) h*ng/ml, and the volume of distribution of the central (Vdc ) and peripheral (Vdp ) compartments was 2.7 (1.3-4.6) and 4.9 (4.3-8.2) L/kg, respectively. A one compartment model best described the oral administration of glaucine with absorption ( t 1 / 2 ka ) and elimination ( t 1 / 2 kel ) half-lives of 0.09 (0.05-0.15) and 0.7 (0.6-0.8) h, respectively. The area under the curve ( AUC 0 ∞ PO ) was 15.1 (8.0-19.5) h·ng/ml. Bioavailability following oral administration was 17%-48%. Following ingestion of shavings, glaucine and liriodenine were detectable in plasma for up to 16 and 48 h, respectively. Glaucine was quantifiable briefly in the urine from two horses. Liriodenine was quantifiable in urine for 12-20 h in four horses and for 48 h in two horses. The presence of liriodenine indicates ingestion of tulip poplar tree parts, however, does not rule out co-administration of purified glaucine in horses.


Asunto(s)
Aporfinas , Tulipa , Administración Oral , Animales , Antiinflamatorios/farmacocinética , Área Bajo la Curva , Estudios Cruzados , Ingestión de Alimentos , Semivida , Caballos , Inyecciones Intravenosas/veterinaria
3.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35112841

RESUMEN

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Asunto(s)
Antiinflamatorios/farmacología , Curcumina/farmacología , Síndrome de Liberación de Citoquinas/prevención & control , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Antiinflamatorios/farmacocinética , Supervivencia Celular/efectos de los fármacos , Quimiocinas/biosíntesis , Curcumina/química , Curcumina/farmacocinética , Citocinas/biosíntesis , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Fosforilación , Glicoproteína de la Espiga del Coronavirus/fisiología
4.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209205

RESUMEN

Cochlear implants, like other active implants, rely on precise and effective electrical stimulation of the target tissue but become encapsulated by different amounts of fibrous tissue. The current study aimed at the development of a dual drug release from a PLLA coating and from the bulk material to address short-term and long-lasting release of anti-inflammatory drugs. Inner-ear cytocompatibility of drugs was studied in vitro. A PLLA coating (containing diclofenac) of medical-grade silicone (containing 5% dexamethasone) was developed and release profiles were determined. The influence of different coating thicknesses (2.5, 5 and 10 µm) and loadings (10% and 20% diclofenac) on impedances of electrical contacts were measured with and without pulsatile electrical stimulation. Diclofenac can be applied to the inner ear at concentrations of or below 4 × 10-5 mol/L. Release of dexamethasone from the silicone is diminished by surface coating but not blocked. Addition of 20% diclofenac enhances the dexamethasone release again. All PLLA coatings serve as insulator. This can be overcome by using removable masking on the contacts during the coating process. Dual drug release with different kinetics can be realized by adding drug-loaded coatings to drug-loaded silicone arrays without compromising electrical stimulation.


Asunto(s)
Antiinflamatorios , Materiales Biocompatibles Revestidos/química , Implantes Cocleares , Dexametasona , Diclofenaco , Sistemas de Liberación de Medicamentos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Dexametasona/química , Dexametasona/farmacocinética , Diclofenaco/química , Diclofenaco/farmacocinética , Liberación de Fármacos , Ratas , Ratas Sprague-Dawley
5.
J Med Chem ; 65(3): 2388-2408, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34982556

RESUMEN

Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 (52) targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities in vitro and in vivo. The X-ray crystal structural analysis of ZL0590 in complex with human BRD4 BD1 and the associated mutagenesis study illustrate a first-in-class nonacetylated lysine (KAc) binding site located at the helix αB and αC interface that contains important BRD4 residues (e.g., Glu151) not commonly shared among other family members and is spatially distinct from the classic KAc recognition pocket. This new finding facilitates further elucidation of the complex biology underpinning bromodomain specificity among BRD4 and its protein-protein interaction partners.


Asunto(s)
Antiinflamatorios/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Factores de Transcripción/antagonistas & inhibidores , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cristalografía por Rayos X , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/farmacocinética , Unión Proteica , Dominios Proteicos , Ratas , Factores de Transcripción/metabolismo
6.
BMC Complement Med Ther ; 22(1): 7, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983472

RESUMEN

BACKGROUND: Patrinia scabra Bunge is a well-known herbal medicine for its favorable treatment on inflammatory diseases owing to its effective ingredients, in which iridoid glycoside plays an extremely significant role. This article aimed to improve the content of total iridoid glycosides in crude extract through a series optimization of extraction procedure. Moreover, considering that both pain and inflammation are two correlated responses triggered in response to injury, irritants or pathogen, the article investigated the anti-inflammatory and analgesic activities of P. scabra to screen out the active fraction. METHOD: P. scabra was extracted by ultrasonic-microwave synergistic extraction (UMSE) to obtain total iridoid glycosides (PSI), during which a series of conditions were investigated based on single-factor experiments. The extraction process was further optimized by a reliable statistical method of response surface methodology (RSM). The elution fractions of P. scabra extract were prepared by macroporous resin column chromatography. Through the various animal experiment including acetic acid-induced writhing test, formalin induced licking and flinching, carrageenan-induced mice paw oedema test and xylene-induced ear edema in mice, the active fractions with favorable analgesic and anti-inflammatory effect were reasonably screen out. RESULTS: The content of PSI could reach up to 81.42 ± 0.31 mg/g under the optimum conditions as follows: ethanol concentration of 52%, material-to-liquid ratio of 1:18 g/mL, microwave power at 610 W and extraction time of 45 min. After gradient elution by the macroporous resin, the content of PSI increased significantly. Compared with other concentrations of elution liquid, the content of PSI in 30 and 50% ethanol eluate was increased to reach 497.65 and 506.90 mg/g, respectively. Owing to the pharmacology experiment, it was reasonably revealed that 30 and 50% ethanol elution fractions of P. scabra could relieve pain centrally and peripherally, exhibiting good analgesic and anti-inflammatory activities. CONCLUSION: Patrinia scabra possessed rich iridoids and exhibited significant analgesic and anti-inflammatory activities.


Asunto(s)
Antiinflamatorios/farmacocinética , Glicósidos Iridoides/farmacología , Iridoides/farmacología , Microondas , Patrinia/metabolismo , Ultrasonido , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Iridoides/uso terapéutico , Ratones , Dolor/tratamiento farmacológico , Fitoterapia , Plantas Medicinales/metabolismo
7.
J Med Chem ; 65(3): 2571-2592, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35060744

RESUMEN

Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are regarded as potential therapeutic targets for nonalcoholic steatohepatitis (NASH). However, PPARα/δ dual agonist GFT-505 exhibited poor anti-NASH effects in a phase III clinical trial, probably due to its weak PPARα/δ agonistic activity and poor metabolic stability. Other reported PPARα/δ dual agonists either exhibited limited potency or had unbalanced PPARα/δ agonistic activity. Herein, we report a series of novel triazolone derivatives as PPARα/δ dual agonists. Among them, compound H11 exhibited potent and well-balanced PPARα/δ agonistic activity (PPARα EC50 = 7.0 nM; PPARδ EC50 = 8.4 nM) and a high selectivity over PPARγ (PPARγ EC50 = 1316.1 nM) in PPAR transactivation assays. The crystal structure of PPARδ in complex with H11 revealed a unique PPARδ-agonist interaction. H11, which had excellent PK properties and a good safety profile, showed potent in vivo anti-NASH effects in preclinical models. Together, H11 holds a great promise for treating NASH or other inflammatory and fibrotic diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR alfa/agonistas , PPAR delta/agonistas , Triazoles/uso terapéutico , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Tetracloruro de Carbono , Diseño de Fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/metabolismo , PPAR delta/metabolismo , Ratas Sprague-Dawley , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/metabolismo , Triazoles/farmacocinética
8.
Clin Pharmacol Ther ; 111(2): 416-424, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34623640

RESUMEN

Tirabrutinib is an irreversible, small-molecule Bruton's tyrosine kinase (BTK) inhibitor, which was approved in Japan (VELEXBRU) to treat B-cell malignancies and is in clinical development for inflammatory diseases. As an application of model-informed drug development, a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for irreversible BTK inhibition of tirabrutinib was developed to support dose selection in clinical development, based on clinical PK and BTK occupancy data from two phase I studies with a wide range of PK exposures in healthy volunteers and in subjects with rheumatoid arthritis. The developed model adequately described and predicted the PK and PD data. Overall, the model-based simulation supported a total daily dose of at least 40 mg, either q.d. or b.i.d., with adequate BTK occupancy (> 90%) for further development in inflammatory diseases. Following the PK/PD modeling and simulation, the relationship between model-predicted BTK occupancy and preliminary clinical efficacy data was also explored and a positive trend was identified between the increasing time above adequate BTK occupancy and better efficacy in treatment for RA by linear regression.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antiinflamatorios/administración & dosificación , Artritis Reumatoide/tratamiento farmacológico , Imidazoles/administración & dosificación , Modelos Biológicos , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/administración & dosificación , Adolescente , Adulto , Agammaglobulinemia Tirosina Quinasa/metabolismo , Antiinflamatorios/farmacocinética , Artritis Reumatoide/enzimología , Ensayos Clínicos Fase I como Asunto , Simulación por Computador , Cálculo de Dosificación de Drogas , Femenino , Humanos , Imidazoles/farmacocinética , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/farmacocinética , Adulto Joven
9.
Clin Pharmacol Ther ; 111(1): 263-271, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582038

RESUMEN

Azathioprine is used frequently to treat several inflammatory conditions. However, treatment is limited by adverse events-in particular, myelotoxicity. Thiopurine-S-methyltransferase (TPMT) and nudix hydrolase-15 (NUDT15) are enzymes involved in azathioprine metabolism; variants in the genes encoding these enzymes increase the risk for azathioprine myelotoxicity. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has recommended dose adjustments based on the results of TPMT and NUDT15 genotyping. However, little is known about the importance of this genetic information in routine clinical care. We hypothesized that in patients with inflammatory diseases, TPMT and NUDT15 genotype data predict the risk of discontinuing azathioprine due to myelotoxicity. This was a retrospective cohort study in 1,403 new adult azathioprine users for the management of inflammatory conditions for whom we had genetic information and clinical data. Among patients who discontinued azathioprine, we adjudicated the reason(s). Genotyping was performed using the Illumina Infinium Expanded Multi-Ethnic Genotyping Array plus custom content. We used CPIC guidelines to determine TPMT and NUDT15 metabolizer status; patients were grouped as either: (i) poor/intermediate, or (ii) normal/indeterminate metabolizers. We classified 110 patients as poor/intermediate, and 1,293 patients as normal/indeterminate metabolizers. Poor/intermediate status was associated with a higher risk for azathioprine discontinuation due to myelotoxicity compared to normal/indeterminate metabolizers (hazard ratio (HR) = 2.90, 95% confidence interval (CI): 1.58-5.31, P = 0.001). This association remained significant after adjustment for race, age at initiation, sex, primary indication, and initial daily dose of azathioprine (adjusted HR (aHR) = 2.67, 95% CI: 1.44-4.94, P = 0.002). In conclusion, TPMT and NUDT15 metabolizer status predicts discontinuation due to myelotoxicity for patients taking azathioprine for inflammatory conditions.


Asunto(s)
Antiinflamatorios/efectos adversos , Azatioprina/efectos adversos , Enfermedades de la Médula Ósea/inducido químicamente , Inflamación/tratamiento farmacológico , Metiltransferasas/genética , Variantes Farmacogenómicas/efectos de los fármacos , Pirofosfatasas/genética , Adulto , Antiinflamatorios/farmacocinética , Azatioprina/farmacocinética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Farmacogenética/métodos , Polimorfismo Genético , Probabilidad , Estudios Retrospectivos
10.
J Nanobiotechnology ; 19(1): 409, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876139

RESUMEN

BACKGROUND: Attenuating inflammatory response and relieving pain are two therapeutic therapeutical goals for rheumatoid arthritis (RA). Anti-inflammatory and analgesic drugs are often associated with many adverse effects due to nonspecific distribution. New drug delivery systems with practical targeting ability and other complementary strategies urgently need to be explored. To achieve this goal, an acupoint drug delivery system that can target deliver anti-inflammatory drugs and simulate acupuncture in relieving pain was constructed, which can co-deliver triptolide (TP) and 2-chloro-N (6)-cyclopentyl adenosine (CCPA). RESULTS: We have successfully demonstrated that acupoint nanocomposite hydrogel composed of TP-Human serum album nanoparticles (TP@HSA NPs) and CCPA could effectively treat RA. The result shows that CCPA-Gel can enhance analgesic effects specifically at the acupoint, while the mechanical and thermal pain threshold was 4.9 and 1.6 times compared with non-acupoint, respectively, and the nanocomposite gel further enhanced. Otherwise, the combination of acupoint and nanocomposite hydrogel exerted synergetic improvement of inflammation, bone erosion, and reduction of systemic toxicity. Furthermore, it could regulate inflammatory factors and restore the balance of Th17/Treg cells, which provided a novel and effective treatment strategy for RA. Interestingly, acupoint administration could improve the accumulation of the designed nanomedicine in arthritic paws (13.5% higher than those in non-acupoint at 48 h), which may explain the better therapeutic efficiency and low toxicity. CONCLUSION: This novel therapeutic approach-acupoint nanocomposite hydrogel, builds a bridge between acupuncture and drugs which sheds light on the combination of traditional and modern medicine.


Asunto(s)
Puntos de Acupuntura , Antiinflamatorios , Artritis Reumatoide/metabolismo , Diterpenos , Nanogeles , Fenantrenos , Terapia por Acupuntura , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Conducta Animal/efectos de los fármacos , Preparaciones de Acción Retardada , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacología , Sistemas de Liberación de Medicamentos , Compuestos Epoxi/química , Compuestos Epoxi/farmacocinética , Compuestos Epoxi/farmacología , Humanos , Masculino , Nanomedicina , Fenantrenos/química , Fenantrenos/farmacocinética , Fenantrenos/farmacología , Ratas , Ratas Sprague-Dawley
11.
Biomolecules ; 11(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34944447

RESUMEN

Carvone is a monoterpene ketone contained in the essential oils of several aromatic and medicinal plants of the Lamiaceae and Asteraceae families. From aromatic plants, this monoterpene is secreted at different concentrations depending on the species, the parts used, and the extraction methods. Currently, pharmacological investigations showed that carvone exhibits multiple pharmacological properties such as antibacterial, antifungal, antiparasitic, antineuraminidase, antioxidant, anti-inflammatory, and anticancer activities. These studies were carried out in vitro and in vivo and involved a great deal of knowledge on the mechanisms of action. Indeed, the antimicrobial effects are related to the action of carvone on the cell membrane and to ultrastructural changes, while the anti-inflammatory, antidiabetic, and anticancer effects involve the action on cellular and molecular targets such as inducing of apoptosis, autophagy, and senescence. With its multiple mechanisms, carvone can be considered as natural compounds to develop therapeutic drugs. However, other investigations regarding its precise mechanisms of action as well as its acute and chronic toxicities are needed to validate its applications. Therefore, this review discusses the principal studies investigating the pharmacological properties of carvone, and the mechanism of action underlying some of these properties. Moreover, further investigations of major pharmacodynamic and pharmacokinetic studies were also suggested.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Monoterpenos Ciclohexánicos/farmacología , Animales , Antiinfecciosos/farmacocinética , Antiinflamatorios/farmacocinética , Antineoplásicos Fitogénicos/farmacocinética , Antioxidantes/farmacocinética , Autofagia , Membrana Celular/química , Supervivencia Celular/efectos de los fármacos , Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/uso terapéutico , Etnofarmacología , Humanos , Aceites Volátiles/química , Aceites de Plantas/química
12.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830247

RESUMEN

Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.


Asunto(s)
Antiinflamatorios/administración & dosificación , Portadores de Fármacos/farmacocinética , Nanotecnología/métodos , Soluciones Oftálmicas/administración & dosificación , Polímeros/farmacocinética , Administración Oftálmica , Animales , Segmento Anterior del Ojo/efectos de los fármacos , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/patología , Antiinflamatorios/farmacocinética , Disponibilidad Biológica , Catarata/tratamiento farmacológico , Catarata/metabolismo , Catarata/patología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/clasificación , Liberación de Fármacos , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Micelas , Nanogeles/química , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Nanotecnología/instrumentación , Soluciones Oftálmicas/farmacocinética , Polímeros/síntesis química , Polímeros/clasificación
13.
Artículo en Inglés | MEDLINE | ID: mdl-34798417

RESUMEN

CRP is an important mediator of the inflammatory response. Pro-inflammatory CRP effects are mediated by pCRP* and mCRP, dissociation products of the native pCRP. The concentration of pCRP during inflammation may rise up to concentrations 1000-fold from baseline. By prevention of the conformational change from pCRP to pCRP*, pro-inflammatory immune responses can be inhibited and local tissue damage reduced. 3-(Dibutylamino)propylphosphonic acid (C10m) is a new substance that can suppress ischemic-reperfusion injury by targeting CRP in the complement cascade. It hampers dissociation of pCRP into its monomers, thus preventing exacerbation of tissue inflammation subsequent to reperfusion injury. In this study, the pharmacokinetics and metabolism of the new drug candidate C10m was investigated. A sensitive and selective method for detection of C10m and its metabolites from plasma and urine was developed with LC-MS and LC-MS/MS coupling. The LLOQ is at 0.1 µg mL-1 and recovery at 87.4% ± 2.8%. Accuracy and precision were within 15% coefficient of variation and nominal concentrations, respectively. Concentration time profile after i.v. bolus injection of C10m was analyzed by LC-MS/MS. Bioavailability has shown to be below 30%. Most likely due to the compounds' very polar chemical properties, no phase-I or phase-II metabolism could be observed. Absence of phase-I metabolism was cross-checked by performing microsomal incubations. Our study revealed that C10m is rapidly eliminated via urine excretion and that half-times appear to be increased with coadministration of the target pCRP.


Asunto(s)
Antiinflamatorios/farmacocinética , Cromatografía Liquida/métodos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Fosforilcolina/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Antiinflamatorios/sangre , Antiinflamatorios/orina , Proteínas del Sistema Complemento/inmunología , Humanos , Espectrometría de Masas , Daño por Reperfusión Miocárdica/inmunología , Fosforilcolina/sangre , Fosforilcolina/orina , Ratas
14.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641631

RESUMEN

Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer's disease and Parkinson's disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.


Asunto(s)
Biflavonoides/farmacología , Plantas/química , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacocinética , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Biflavonoides/química , Biflavonoides/farmacocinética , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Estructura Molecular
15.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638992

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Autofagia/efectos de los fármacos , Progresión de la Enfermedad , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antiinflamatorios/farmacocinética , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Actividad Motora/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacocinética , Receptores Purinérgicos P2X/metabolismo
16.
J Nanobiotechnology ; 19(1): 331, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674712

RESUMEN

BACKGROUND: Ischemic stroke is an acute and severe neurological disease, and reperfusion is an effective way to reverse brain damage after stroke. However, reperfusion causes secondary tissue damage induced by inflammatory responses, called ischemia/reperfusion (I/R) injury. Current therapeutic strategies that control inflammation to treat I/R are less than satisfactory. RESULTS: We report a kind of shield and sword nano-soldier functionalized nanoparticles (monocyte membranes-coated rapamycin nanoparticles, McM/RNPs) that can reduce inflammation and relieve I/R injury by blocking monocyte infiltration and inhibiting microglia proliferation. The fabricated McM/RNPs can actively target and bind to inflammatory endothelial cells, which inhibit the adhesion of monocytes to the endothelium, thus acting as a shield. Subsequently, McM/RNPs can penetrate the endothelium to reach the injury site, similar to a sword, and release the RAP drug to inhibit the proliferation of inflammatory cells. In a rat I/R injury model, McM/RNPs exhibited improved active homing to I/R injury areas and greatly ameliorated neuroscores and infarct volume. Importantly, in vivo animal studies revealed good safety for McM/RNPs treatment. CONCLUSION: The results demonstrated that the developed McM/RNPs may serve as an effective and safe nanovehicles for I/R injury therapy.


Asunto(s)
Membrana Celular/química , Accidente Cerebrovascular Isquémico/metabolismo , Monocitos/citología , Nanopartículas/química , Daño por Reperfusión/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Masculino , Sistema de Administración de Fármacos con Nanopartículas , Ratas , Ratas Sprague-Dawley , Sirolimus/química , Sirolimus/farmacocinética , Sirolimus/farmacología
17.
Adv Drug Deliv Rev ; 179: 114021, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34710529

RESUMEN

The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Inmunidad Mucosa/fisiología , Mucosa Intestinal/fisiología , Sistema de Administración de Fármacos con Nanopartículas/farmacocinética , Administración Oral , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Humanos , Tolerancia Inmunológica/fisiología , Membrana Mucosa/metabolismo , Vacunas/administración & dosificación
18.
Oxid Med Cell Longev ; 2021: 1987588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594472

RESUMEN

Luteolin is a naturally occurring secondary metabolite belonging to the class of flavones. As many other natural flavonoids, it is often found in combination with glycosides in many fruits, vegetables, and plants, contributing to their biological and pharmacological value. Many preclinical studies report that luteolin present excellent antioxidant, anticancer, antimicrobial, neuroprotective, cardioprotective, antiviral, and anti-inflammatory effects, and as a consequence, various clinical trials have been designed to investigate the therapeutic potential of luteolin in humans. However, luteolin has a very limited bioavailability, which consequently affects its biological properties and efficacy. Several drug delivery strategies have been developed to raise its bioavailability, with nanoformulations and lipid carriers, such as liposomes, being the most intensively explored. Pharmacological potential of luteolin in various disorders has also been underlined, but to some of them, the exact mechanism is still poorly understood. Given the great potential of this natural antioxidant in health, this review is aimed at providing an extensive overview on the in vivo pharmacological action of luteolin and at stressing the main features related to its bioavailability, absorption, and metabolism, while essential steps determine its absolute health benefits and safety profiles. In addition, despite the scarcity of studies on luteolin bioavailability, the different drug delivery formulations developed to increase its bioavailability are also listed here.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Luteolina/farmacocinética , Sepsis/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Portadores de Fármacos/química , Humanos , Luteolina/química , Luteolina/farmacología , Luteolina/uso terapéutico , Fagocitosis/efectos de los fármacos
19.
ACS Appl Mater Interfaces ; 13(40): 47341-47353, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597036

RESUMEN

Neuroinflammation following spinal cord injury usually aggravates spinal cord damage. Many inflammatory cytokines are key players in neuroinflammation. Owing largely to the multiplicity of cytokine targets and the complexity of cytokine interactions, it is insufficient to suppress spinal cord damage progression by regulating only one or a few cytokines. Herein, we propose a two-pronged strategy to simultaneously capture the released cytokines and inhibit the synthesis of new ones in a broad-spectrum manner. To achieve this strategy, we designed a core/shell-structured microcomposite, which was composed of a methylprednisolone-incorporated polymer inner core and a biocompatible polydopamine outer shell. Thanks to the inherent adhesive nature of polydopamine, the obtained microcomposite (MP-PLGA@PDA) efficiently neutralized the excessive cytokines in a broad-spectrum manner within 1 day after spinal cord injury. Meanwhile, the controlled release of immunosuppressive methylprednisolone reduced the secretion of new inflammatory cytokines. Benefiting from its efficient and broad-spectrum capability in reducing the level of cytokines, this core/shell-structured microcomposite suppressed the recruitment of macrophages and protected the injured spinal cord, leading to an improved recovery of motor function. Overall, the designed microcomposite successfully achieved the two-pronged strategy in cytokine neutralization, providing an alternative approach to inhibit neuroinflammation in the injured spinal cord.


Asunto(s)
Antiinflamatorios/uso terapéutico , Preparaciones de Acción Retardada/química , Metilprednisolona/uso terapéutico , Microplásticos/química , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Antiinflamatorios/farmacocinética , Citocinas/metabolismo , Indoles/química , Metilprednisolona/farmacocinética , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polímeros/química , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo
20.
Drug Des Devel Ther ; 15: 4105-4123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616144

RESUMEN

PURPOSE: The effective treatment of ulcerative colitis (UC) poses substantial challenges, and the aetiopathogenesis of UC is closely related to infectious, immunological and environmental factors. Currently, there is a considerable need for the development of orally bioavailable dosage forms that enable the effective delivery of therapeutic drugs to local diseased lesions in the gastrointestinal tract. METHODS: Berberine (BBR) and Atractylodes macrocephala Koidz (AM) volatile oil, derived from the Chinese herbs Coptis chinensis Franch and Atractylodes macrocephala Koidz, have anti-inflammatory and immunomodulatory activities. In this study, we prepared colon-targeted pellets loaded with BBR and stomach-targeted pellets loaded with AM volatile oil for the synergistic treatment of UC. The Box-Behnken design and ß-cyclodextrin inclusion technique were used to optimize the enteric coating formula and prepare volatile oil inclusion compounds. RESULTS: The two types of pellets were spherical and had satisfactory physical properties. The pharmacokinetic results showed that the AUC and MRT values of the dual-targeted (DPs) pellets were higher than those of the control pellets. In addition, in vivo animal imaging confirmed that the DPs could effectively deliver BBR to the colon. Moreover, compared with sulfasalazine and monotherapy, DPs exerted a more significant anti-inflammatory effect by inhibiting the expression of inflammatory factors including IL-1ß, IL-4, IL-6, TNF-α and MPO both in serum and tissues and enhancing immunity by decreasing the production of IgA and IgG. CONCLUSION: The DPs play a synergistic anti-UC effect by exerting systemic and local anti-inflammatory and provide an effective oral targeted preparation for the treatment of UC.


Asunto(s)
Berberina/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Aceites Volátiles/farmacología , Administración Oral , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Área Bajo la Curva , Atractylodes/química , Berberina/aislamiento & purificación , Berberina/farmacocinética , Química Farmacéutica , Colitis Ulcerosa/fisiopatología , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacocinética , Ratas , Ratas Sprague-Dawley , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...